Inorganic Waste Upcycling: The lessons learned, and the outlook for the future

Miroslava Hujová, Patricia Rabello Monich, Jozef Kraxner, Enrico Bernardo From the Glass processing department

Current issues of Upcycling: Where are we at?

Points of success for upcycling¹:

1) **Reasonable distance** between resourceprocessing facility

2) Steady available waste streams (chemically/by amounts)

3) Legislation opening possibility for upcycled products to enter market/existence of subsidies for market to be interested into novel technology

Cooperation with industry? Communication? Comittment?

Advantage of Slovakia: legislation is not rigidly set, as it is so in other countries: by the template of other countries (Romania/Ukraine) this could be seen as the advantage for easier implementation of novel construction materials based on wastes

1 Huang et al 2020

Strategy of inorganic waste upcycling at UNIPD: Alkali-activation

2) Wonderful Graphics courtesy N. Toniolo et al 2018 3) NMR spectra from Walkley et al 2018

Inorganic Waste Upcycling - Issues

Mineralogy

- Amorphous & crystalline
- Crystallization control
- > XRD
- Surface effects (SEM)

Chemistry

- Si/Al ratio?
- Pollutants **identification** XRF
- Characterization of bonds (NMR, FTIR)

Feasibility

- **Low** T&conc.
- High waste loading in material
- Alkali-activation strength/timetemperature regimen

- EC standards
- Immobilization of polutants for inert material standards
 Corrosion tests&

ICP-OES

4

Inorganic Waste Upcycling (Examples) Image: Cullets of the state of th

- Mechanical properties
 Safety&Durability
 Low procesing T
- Immobilization of polutants
- Versatile utility (from bulk to foams)
- Similar to
 Portland Cement
- Immediate curing/high speed of curing
- Vitrification utilization
 High amounts of Fe in some wastes =
 Functionalization

Glass-ceramic foams from cullets only

✓ Strongest foams @ 4wt.% (217 MPa in Crushing strength)

6

Porosity up to 80% share of opened porosity grows with the addition of CaCO3

Glass-ceramic Foams from Vitrified Bottom Ash from Bratislava

R 70/30 2.5 M NaOH T range 850-1000°C f10 K/min – 5 K/min Soda-lime-silica glass Alumina-Borosilicate glass

Leaching tests

Mechanical tests

- ✓ Inert except VBASLG @ 900°C
- ✓ Increasing temperatures supported inclusion of Cr³⁺ into gehlenite s-s
- ✓ At lower temperatures Cr³⁺ remains in amorphous phase

- ✓ Bending strength exceeds 100 Mpa
- SLG foams were weaker
- ✓ Effect of **amorphous phase**?
- ✓ Different mineralogy for BSG: less gehlenite, more feldspathoids

Smelting, Gehlenite glasses and possible solutions for fly ashes?

Smelting: separation of metals from a mineral slag

Slag activated with water after 7 Days

- CaSH phase: Vertumite; Katoite; Gismondine
- ✓ Perovskite; Quartz
- Mechanism similar to that of amorphous gehlenite – like glasses in the reaction with water (Corning Patent)

Possible extraction of other toxic and heavy metals (Cr, other volatiles such as Se?)⁴ into ferrous melts

? Leaching of Cr and Mo

? Mechanical properties (material is fairly weak) around 7-9MPa in flexural strength

~

Counts

Vitrification – possible solutions for non-nuclears?

Safest and (probably) most expensive strategy

Fly Ash + Red Mud + SLG cullets

- Step: simulation of composition + alkali-activation (8M NaOH) 1.
- Actual wastes melting + alkali activation (8M NaOH) 2.

Glass after melting

Glass after alkali-activation

CaSH phases \checkmark

- Good flexural strength (up to 15 Mpa) \geq
- Leachability? Mo remains above treshold for inert materials
- Functionalization? Shielding? Magnetic properties?

- ✓ Hard Work?
 ✓ Broken samples?
 ✓ Polishing to precision?
 ✓ Burns from caustics?
 - It is worth it for a decent publication.

But

Should we stop there?

Where to go from here?

- Results either were or are about to be published in good journals
- Strategies we found are promising for further elaboration/extension to other inorganic wastes
- But how do we move on the TRL scale?
- Is maximization of waste implementation in upcycled product having only benefits?
- LCA? Game models? Sustainability via MFA?

This presentation is a part of dissemination activities of project FunGlass. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739566.

Miroslava Hujova Miroslava.hujova@tnuni.sk

www.funglass.eu

FunGlass - Centre for Functional and Surface Functionalized Glass Alexander Dubček University of Trenčín Študentská 2, 911 50 Trenčín, Slovak Republic

FunGlass

centre for functional and surface functionalized glass

THANK YOU FOR YOUR ATTENTION