CALENDAR OF PLANNED EVENTS

April 2019

May
MO
TU
WE
TH
FR
SA
SU
1
2
3
4
5
6
7
Events for April

1st

No Events
Events for April

2nd

No Events
Events for April

3rd

No Events
Events for April

4th

No Events
Events for April

5th

No Events
Events for April

6th

No Events
Events for April

7th

No Events
8
9
10
11
12
13
14
Events for April

8th

No Events
Events for April

9th

No Events
Events for April

10th

No Events
Events for April

11th

No Events
Events for April

12th

No Events
Events for April

13th

No Events
Events for April

14th

No Events
15
16
17
18
19
20
21
Events for April

15th

No Events
Events for April

16th

No Events
Events for April

17th

No Events
Events for April

18th

No Events
Events for April

19th

No Events
Events for April

20th

No Events
Events for April

21st

No Events
22
23
24
25
26
27
28
Events for April

22nd

No Events
Events for April

23rd

No Events
Events for April

24th

No Events
Events for April

25th

No Events
Events for April

26th

No Events
Events for April

27th

No Events
Events for April

28th

No Events
29
30
1
2
3
4
5
Events for April

29th

No Events
Events for April

30th

No Events

CALENDAR OF PLANNED EVENTS

April 2019

May
MO
TU
WE
TH
FR
SA
SU
1
2
3
4
5
6
7
Events for April

1st

No Events
Events for April

2nd

No Events
Events for April

3rd

No Events
Events for April

4th

No Events
Events for April

5th

No Events
Events for April

6th

No Events
Events for April

7th

No Events
8
9
10
11
12
13
14
Events for April

8th

No Events
Events for April

9th

No Events
Events for April

10th

No Events
Events for April

11th

No Events
Events for April

12th

No Events
Events for April

13th

No Events
Events for April

14th

No Events
15
16
17
18
19
20
21
Events for April

15th

No Events
Events for April

16th

No Events
Events for April

17th

No Events
Events for April

18th

No Events
Events for April

19th

No Events
Events for April

20th

No Events
Events for April

21st

No Events
22
23
24
25
26
27
28
Events for April

22nd

No Events
Events for April

23rd

No Events
Events for April

24th

No Events
Events for April

25th

No Events
Events for April

26th

No Events
Events for April

27th

No Events
Events for April

28th

No Events
29
30
1
2
3
4
5
Events for April

29th

No Events
Events for April

30th

No Events

Philosophiae doctor (PhD)                                                                                                                              

PhD. Study Program: Inorganic Technology and Non-metallic Materials – general information

Graduates of PhD study program in the area of Inorganic Technology and Non-metallic Materials gain deep knowledge on scientific methods of research related to preparation of new types of non-metallic inorganic materials, with special focus on glass, ceramics, and surface modification of a broad range of various materials, including biomaterials. Graduates are able to solve problems related to inorganic technologies, development and characterization of new materials. They have special knowledge in the area of glass, inorganic binders, ceramic and refractory materials and inorganic additives. They have deep theoretical knowledge in the field of thermodynamics and kinetics and are capable of solving challenging engineering problems in technical practice. Graduates understand methods of studying structures as well as materials characteristics. They speak foreign languages, actively use computer and information systems, are able to work actively in teams, plan their own development within their research field and execute project management. Gained knowledge represents an excellent basis for obtaining a job either in academic or industrial research and development.

What we offer:

  • Form of study: full time – 4 years / part time – 5 years
  • Unique opportunity to participate in the European project integrating significant international knowhow and experience
  • Access to up to 1 year internships with FunGlass international partners at their home sites in Germany, Italy, or Spain under supervision of world leading scientists
  • Shorter (up to 3 months) training internships at various research institutions in EU
  • Individual training plans including not only scientific but also complementary competencies
  • Scholarships to cover living cost during study
  • Monetary allowance to cover the cost of internships, including accommodation, per diems, and travel
  • Access to high-end laboratories and equipment; for full list see http://www.funglass.eu/equipment/

                                       

 

PhD. Topics for 2019/2020:

 

Supervisor: Dr. M. Chromčíková, FunGlass, Slovakia

Co – supervisor: prof. M. Liška, Funglass, Slovakia

Partner 1 – supervisor: Dr. Y. Castro, CSIC, Spain

Abstract: The corrosion of the tableware glass (especially in dishwashing machines in the large gastronomy) and weathering during the storage as well as during the oversea transport is from the actual point of view one of the most important questions of the glass producers economic competition. The main aim of the dissertation is the study of composition – structure – property relationships of oxide glasses leading to the proposal of methodology enabling the prediction of glass resistance against corrosion and weathering. The methodology is established on the set of different glasses, with differences in chemical composition of the surface as well as in the bulk. The differences are justified with respect to thermodynamic modeling, surface tension measurement and surface composition analyses by progressive spectroscopic methods. Such obtained results should be put into correlation with glass corrosion and weathering process.

Školiteľ: Dr. M. Chromčíková, FunGlass, Slovensko

Spoluškoliteľ: prof. M. Liška, Funglass, Slovensko

Partner 1 – školiteľ: Dr. Y. Castro, CSIC, Španielsko

Abstrakt: Problematika korózie (napr. v umývačkách riadu vo veľkej gastronómii) a zvetrávania (napr. pri dlhodobom skladovaní a zaoceánskom transporte) úžitkového skla sa v poslednom období stala jedným z kľúčových faktorov konkurencieschopnosti podnikov sklárskeho priemyslu. Hlavným cieľom dizertačnej práce je poznanie vzťahov medzi zložením, štruktúrou a vlastnosťami oxidových skiel umožňujúce vývoj metodiky na predikciu odolnosti voči korózii a zvetrávaniu. Metóda riešenia spočíva v skúmaní série skiel z pohľadu ich zloženia ako v objeme tak v povrchovej vrstve získavaného na základe termodynamického modelovania, merania povrchového napätia a analýzy povrchu vyspelými spektrálnymi metódami. Takto získané výsledky sa budú skúmať z pohľadu ich korelácie s odolnosťou skúmaných skiel vzhľadom ku korózii a zvetrávaniu.

 

Supervisor: Dr. R. Klement, FunGlass, Slovakia

Partner 1 – supervisor: Dr. M. Pascual, CSIC, Spain

Partner 2 – supervisor: prof. L. Wondraczek, FSU, Germany

Abstract: Rare-earth (RE) doped oxyfluoride glass-ceramics possess interesting optical properties with applications in telecommunications and optoelectronics. These materials combine the transparency and mechanical and chemical resistance of aluminosilicate glasses with the low phonon energy and facile incorporation of RE ions in the fluoride crystals. The incorporation of RE ions in the crystalline phases enhances the optical emission intensity, a major property of these materials [1, 2]. This research line is focused on the design of aluminosilicate glass compositions which can provide the precipitation of phases, mainly fluorides with nanometric size and with interest for optical applications. In particular, glass-ceramics within the system SiO2-Al2O3-Na2O-K2O-La/Y/Gd/LuF3 will be developed. The objective is to optimize the crystalline fraction and the amount of dopant in order to improve the optical efficiency. These materials will be doped with rare-earth ions in order to characterize the possible associated emission up-conversion and down-conversion processes.

Some of the glasses will be used to obtain preforms for optical fibres. The target is to obtain fibres with a homogeneous diameter optimizing the process by means of the strict control of temperature, viscosity and speed. The fibres must undergo then the suitable thermal treatment to become glass-ceramic fibres.

Spark Plasma Sintering (SPS) from glass-powders obtained from melting and sol-gel will also be used to obtain transparent glass-ceramics as an alternative processing route. SPS is a powerful technology that combines fast heating rate with high uniaxial pressure, which allows obtaining highly densified compacts at low sintering temperature and short holding time [3].

[1] A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties, Int. Mater. Rev. 57 (2012) 165–186. oi:10.1179/1743280411Y.0000000004.

[2] A. de Pablos-Martín. PhD Thesis. Transparent glass-ceramics of the system SiO2-Al2O3-Na2O-K2O-LaF3/YF3: Crystallization mechanisms and optical properties.

[3] Z. A. Munir, U.Anselmi-Tamburini, M.Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41 (2006) 763–777

Školiteľ: Dr. R. Klement, FunGlass, Slovensko

Partner 1 – školiteľ: Dr. M. Pascual, CSIC, Španielsko

Partner 2 – školiteľ: prof. L. Wondraczek, FSU, Nemecko

Abstrakt: Sklo-keramické materiály na báze oxyfluoridov dopovaných iónmi vzácnych zemín (RE – Rare-Earth) vykazujú zaujímavé optické vlastnosti, ktoré ich predurčujú pre aplikácie v telekomunikačnej technike a optoelektronike. Tieto materiály spájajú v sebe niekoľko vlastností, ako transparentnosť, mechanickú a chemickú odolnosť hlinitano-kremičitanových skiel s nízkou energiou fonónov a možnosťou začlenenia RE iónov vo fluoridových kryštáloch do sklenej matrice. Začlenenie RE iónov v kryštalickej fáze do sklenej matrice zvyšuje intenzitu emisie týchto materiálov [1, 2]. Výskumná úloha tejto PhD. témy sa zameriava na prípravu hlinitano-kremičitanových skiel s takým zložením, ktoré umožní kryštalizáciu želaných kryštalických fáz (najmä fluoridov) s nanometrovou veľkosťou kryštalitov so zaujímavými optickými aplikáciami. Vyvíjané budú najmä sklo-keramické materiály v systéme SiO2-Al2O3-Na2O-K2O-La/Y/Gd/LuF3. Cieľom je optimalizovať množstvo kryštalitov v sklenej matrici a koncentráciu dopantu (RE iónov) v kryštalickej fluoridovej fáze v snahe zvýšiť optickú účinnosť pripraveného sklo-keramického materiálu. Detailne študované budú „up-conversion“ a „down-conversion“ emisné procesy.

Vybrané sklá s vhodnými vlastnosťami budú použité pri príprave optických vlákien. Cieľom je pripraviť vlákna s uniformným priemerom pozdĺž celého vlákna, čo vyžaduje optimalizáciu procesu ťahania vlákna striktnou kontrolou teploty a viskozity taveniny a rýchlosti ťahania vlákna. Následne budú sklené vlákna tepelne spracované pri vhodnom časovo-teplotnom režime v snahe docieliť kryštalizáciu fluoridových nanofáz a prípravu sklo-keramických vlákien.

Alternatívnym spôsobom prípravy transparentných sklo-keramických materiálov bude

spekanie skleného prášku skla pripraveného tavením alebo sol-gel procesom metódou SPS – Spark Plasma Sintering. SPS je účinná technika spekania, ktorá kombinuje vysokú rýchlosť ohrevu vzorky s vysokým axiálnym tlakom, čo umožňuje prípravu vysoko zhutnených vzoriek pri nízkych teplotách spekania a krátkych časoch izotermickej výdrže [3].

[1] A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties, Int. Mater. Rev. 57 (2012) 165–186.

[2] A. de Pablos-Martín. PhD Thesis. Transparent glass-ceramics of the system SiO2-Al2O3-Na2O-K2O-LaF3/YF3: Crystallization mechanisms and optical properties.

[3] Z. A. Munir, U.Anselmi-Tamburini, M.Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41 (2006) 763–777.

 

Supervisor: Dr. J. Kraxner, FunGlass, Slovakia

Partner 1 – supervisor: prof. E. Bernardo, UNIPD, Italy

Partner 2 – supervisor: Dr. F. Nicoletti, NOM, Italy

Abstract: The characterization, modification and improvement of the surfaces of glasses for pharma use is a topic of primary importance especially when it aims at a substantial improvement of the final patient safety. Indeed, new biotechnological products, monoclonal antibodies and recently developed drugs are substances of increased complexity that can in some case interact with the glass surfaces causing inactivation or dangerous adverse reactions. In this perspective it is necessary to improve the knowledge on glass surfaces and eventual coatings, their chemical composition and structure using advanced analytical techniques such as XPS and many other. Furthermore, there is the need of new analytical methods aimed at characterizing these interactions occurring. Finally, there is the need of developing innovative or modified glass surfaces (e.g. with the application of coatings) in order to respond to the demand of new drugs. The work will be carried out in collaboration with the company Nuova Ompi (Stevanato group), Italy.

 

Školiteľ: Dr. J. Kraxner, FunGlass, Slovensko

Partner 1 – školiteľ: prof. E. Bernardo, UNIPD, Taliansko

Partner 2 – školiteľ: Dr. F. Nicoletti, NOM, Taliansko

Abstrakt: Charakterizácia, modifikácia a vylepšenie vlastností skiel pre farmaceuticky priemysel je veľmi dôležitou témou, keďže sa v konečnom dôsledku jedná o zabezpečenie väčšej finálnej bezpečnosti pacientov. Nové biotechnologické produkty, monoklonálne protilátky a v súčasnosti vyvíjané lieky sú vysoko komplexné látky, čo v niektorých prípadoch vedie k reakcii s povrchom skla ampuliek, s výslednou inaktiváciou lieku alebo nebezpečnými nežiaducimi reakciami. Z tohto hľadiska je veľmi dôležité skúmať vlastnosti sklených povrchov a finálnych povlakov použitím pokrokčilých analytických metód a technológií ako napr.: XPS a následne zlepšiť/upraviť ich chemické zloženie a štruktúru. Okrem tohto je potrebné zamerať sa aj na ďalšie analytické metódy pre správnu charakterizáciu týchto interakcií. Práca sa bude zameriavať aj na vývoj nových a modifikovaných povlakov pre nové lieky a bude vykoná v spolupráci so spoločnosťou Nuova Ompi (skupina Stevanato) v Taliansku.

Supervisor: Dr. D. Galusková, FunGlass, Slovakia

Partner 1 – supervisor: prof. A. Boccaccini, FAU, Germany

Abstract: Large surface area and accessible porosity of mesoporous bioactive glasses (MBGs) account for excellent drug delivery ability applicable in e.g. preventing diseases related to infections or for stimulating bone regeneration via the release of osteogenic and angiogenic ions. The present research project will design a new series of MBGs doped with different ions to become therapeutically effective. The main interest will be the tailoring of the dissolution kinetics of MBGs through optimalization of the content of therapeutic ions, which should be released in a reproducible and predictable rate in a biological buffer solution under different conditions simulating the body environment. The experimental procedure for inline measurement of leachates from MBGs immersion tests will be established in order to address the initial dissolution behaviour as well as the long term performance to maintain a desired therapeutic concentration for a predetermined period of time. Mechanisms of interaction between MBGs and biological fluids, including MGG-protein interactions will be adressed and discussed. The output will include proposed compositions of MBGs systems, which will be capable of releasing therapeutic ions in a controlled manner. Candidates are required to possess the ability to work in a multidisciplinary project and to have fundamental skills in quantitative and qualitative spectroscopy analysis of materials predominantly by AAS or ICP techniques.

Školiteľ: Dr. D. Galusková, FunGlass, Slovakia

Partner 1 – školiteľ: prof. A. Boccaccini, FAU, Germany

Abstrakt: Veľký povrch a dostupnosť pórov predurčujú mezopórovité bioaktívne sklá (MBGs) pre transport liečiv napr. pri prevencii infekčných ochorení alebo pri stimulovaní rastu kostí prostredníctvom uvoľňovania osteogénnych alebo angiogénnych iónov. Výskumný projekt zahŕňa novú sériu MBG skiel dopovaných rôznymi iónmi s terapeutickým účinkom. Hlavným zámerom bude ladenie kinetiky rozpúšťania MBG skiel, čiže optimalizácia množstva terapeutických iónov v sklenej matrici tak, aby ich transport do pufrovaného biologického roztoku bol kontrolovateľný a reprodukovateľný za rôznych podmienok simulujúcich biologické prostredie. Navrhne sa experimentálny postup pre priame meranie výluhov z MBG testov s cieľom zaznamenať počiatočné vylúhovanie terapeutických iónov ako aj ich dlhodobú odozvu v kontakte s telovými tekutinami. Výstupy z experimentálnych testov budú použité pre hlbšie porozumenie mechanizmov interakcií MBG skiel s biologickými médiami, vrátane interakcií s MGG-proteínmi. Navrhne sa MBGs systém s riadeným uvoľňovaním terapeutických iónov. Požaduje sa multidisciplinárny prístup pri riešení výskumnej úlohy, ako aj základné znalosti v oblasti kvalitatívnej a kvantitatívnej spektroskopickej analýzy konkrétne analytických techník ako AAS alebo ICP.

Supervisor: Dr. R. Klement, FunGlass, Slovakia

Partner 1 – supervisor: prof. L. Wondraczek, FSU, Germany

Partner 2 – supervisor: prof. A. Durán, CSIC, Spain

Abstract: Glass is one of the most popular and versatile building materials used today, due in part to its constantly improving solar and thermal performance, thus saving energy demand of the buildings. One way this performance is achieved is through the use of passive and solar control low-e (low thermal emissivity) coatings. Low-E coatings have been developed to minimize the amount of ultraviolet and infrared light that can pass through glass without compromising the amount of visible light that is transmitted.

The topic of a PhD. work is focused on preparation of multilayers as low-e coatings with good adhesion between the individual functional layers on the glass substrate together with TiO2 layer that ensures the self-cleaning properties of a glass substrate. The multilayers will be prepared by PVD (Physical Vapour Deposition) method. The special attention will be paid on fundamental nanomechanical analyses of prepared multilayers using advanced nano- and pico-indentation technique. In the first step, a low-e multilayer coatings will be prepared and studied on the small laboratory scale, than the obtained knowledge will be transferred into large scale using the pilot equipment.

Školiteľ: Dr. R. Klement, FunGlass, Slovensko

Partner 1 – školiteľ: prof. L. Wondraczek, FSU, Nemecko

Partner 2 – školiteľ: prof. A. Durán, CSIC, Španielsko

Abstrakt: Sklo je v súčasnosti jedným z najpopulárnejších a univerzálnych stavebných materiálov, a to najmä kvôli stále sa zlepšujúcich vlastností z pohľadu tepelných charakteristík a priepustnosti slnečného žiarenia. To umožňuje výrazné vylepšenie energetických vlastností postavených budov. Tento cieľ možno dosiahnuť použitím tzv. Low-E povlakov (povlakov s nízkou emisivitou). Low-E povlaky minimalizujú prestup UV žiarenia z vonkajšej strany skla, naopak z vnútornej strany odrážajú infračervené žiarenie späť do miestnosti a tým minimalizujú tepelné straty, pričom viditeľné svetlo tento povlak prepúšťa.

Dizertačná práca je zameraná na prípravu nových viacvrstvových low-e povlakov s dobrou adhéziou medzi jednotlivými vrstvami nanesených na sklenom substráte spolu s TiO2 vrstvou, ktorá zabezpečí samočistiace vlastnosti skleného substrátu. Multivrstvy budú pripravené technikou PVD (Physical Vapour Deposition – fyzikálna depozícia vrstvy z pár). Špeciálna pozornosť bude venovaná fundamentálnej nanomechanickej analýze pripravených multivrstiev využitím nano- a piko-indentačných techník. V prvok kroku, low-e multivrstvy budú pripravené s študované v laboratórnom merítku, následne budú získané poznatky využité a transferované na  poloprevádzkové podmienky.

Supervisor: Dr. R. Klement, FunGlass, Slovakia

Partner 1 – supervisor: prof. L. Wondraczek, FSU, Germany

Partner 2 – supervisor: Dr. M. Pascual, CSIC, Spain

Abstract: Photoluminescence (PL) is phenomenon in certain materials that uses photons as stimulus to generate the lower/higher-energy photons. This event is also utilized in pc-WLED (phosphor converted-white LED), that are increasingly used as significantly energy saving white light sources. Phosphor, is made from a suitable host material with an added activator (luminescence active ion), than totally (NUV) or partially (blue light) convert light form LED chip to finally produce white light.

The topic of a PhD. work is focused on the preparation and detailed study of oxide phosphors for applications in bright white pc-WLEDs with increased emissivity in red spectral range producing warmer white light. The phosphors will be prepared as glasses, polycrystalline materials or glass-ceramics doped by RE and/or TM ions and their combinations. The structure of glasses will be investigated by spectroscopic methods (MAS NMR, IR and Raman spectroscopy). The thermal properties and crystallization kinetics will be studied by thermoanalytical methods to characterise glass systems in details. The concentration of luminescence active ions will be optimised to achieve PL emission with sufficiently high intensity, also in the red spectral region. The optical (UV-VIS-NIR) and photoluminescence properties will be studied in details: steady-state PL, decay curves (TCSPC), effect of temperature on PL properties (emission intensity and lifetime). The special attention will be placed on relation of emission properties (after excitation by blue/NUV light) vs. structure and morphology of materials, concentration of RE and TM ions, effect of alkaline/alkaline earth ions on emission properties of material.

Školiteľ: Dr. R. Klement, FunGlass, Slovensko

Partner 1 – supervisor: prof. L. Wondraczek, FSU, Nemecko

Partner 2 – supervisor: Dr. M. Pascual, CSIC, Španielsko

Abstrakt: Fotoluminiscencia je fyzikálny jav v určitých typoch materiálov, ktorý využíva fotóny istej energie ako stimul pre generovanie fotónov o nižšej/vyššej energie ako je stimulujúce žiarenie. Tento jav sa využíva v pc-WLED (luminoforom generované biele svetlo v LED), ktoré signifikantne šetria elektrickú energiu a sú stále častejšie používané namiesto konvenčných svetelných zdrojov. Luminofor sa skladá z vhodnej matrice a pridaného aktivátora/aktivátorov (luminiscenčne aktívnych iónov), ktoré úplne (NUV žiarenie) alebo čiastočne (modré žiarenie) konvertujú na biele svetlo.

Dizertačná práca je zameraná na prípravu a detailné štúdium luminoforov využiteľných pre aplikácie v LED diódach emitujúcich biele svetlo (pc-WLED). Luminofory budú pripravené ako sklá, polykryštalické alebo sklo-keramické materiály, dopované iónmi vzácnych zemín (RE) a/alebo iónmi prechodných prvkov (TM), respektíve ich kombináciou. Štruktúra skiel bude skúmaná spektroskopickými metódami (MAS NMR, IČ a ramanovská spektroskopia). Termické vlastnosti a kinetika kryštalizácie skiel bude studovná termoanalytickými metódami. Optimalizovaná bude koncentrácia pridaných fotoluminiscenčne aktívnych iónov v snahe dosiahnuť čo najlepšiu emisiu vo viditeľnej oblasti aj v červenej oblasti spektra. Detailne budú študované optické a fotoluminiscenčné vlastnosti pripravených dopovaných sklených a sklokeramických materiálov (UV-VIS-NIR a steady-state fluorescenčná spektroskopia), kinetika zhášania excitovaného stavu pomocou časovo-rozlíšenej fluorescenčnej spektroskopie (TCSPC), vplyv teploty na intenzitu/zhášanie emitovaného PL žiarenia. Pozornosť bude venovaná najmä vzťahu emisné spektrálne vlastnosti materiálu pri excitáci modrým svetlom ako aj NUV (blízka UV) žiarením vs. štruktúra a morfológia materiálu, koncentrácia RE a TM iónov, a vplyvu katiónov alkalických kovov a kovov alkalickej zeminy na emisné vlastnosti materiálu.

Supervisor: prof. D. Galusek, FunGlass, Slovakia

Partner 1 – supervisor: prof. A. Durán, CSIC, Spain

Abstract: The project proposes to investigate the preparation of integrated self-healing systems for light metal alloys based on anodic, organic, hybrid and inorganic layers. These systems will be able to provide active behavior suppressing corrosion processes near defects combining different repairing mechanisms which will be progressively activated, to provide a prolonged life time.

Cr (VI) -based compounds represent the state of the art in corrosion protection of aluminum alloys in the aerospace field. The self-healing ability, present in the chromate conversion, is superior to any other protection system currently available, but European directives strongly limit the use of Cr (VI) for its health and environmental toxicity.

This project proposes to replace chromate conversion coatings by developing systems that combine different self-healing mechanisms in the same system, joining different layers that constitute a corrosion resistant architecture.

The project considers the development of anodic oxide layers for light alloys based on the incorporation of encapsulated corrosion inhibitors into the oxide layer and thus leading to self-healing ability. Then, a sol-gel coating will be deposited onto anodic films as an alternative sealing method to enhance the corrosion performance of these coatings. The infiltration of the anodic films using different sol-gel sols will be also considered.

In the sol-gel part, the development of novel inorganic films combining organic and/or inorganic inhibitors as salts (cerium or rare earth) will be considered. These inhibitors are activated by environmental parameters promoting the self-healing mechanisms effect; e.g. Glass-like CexOy coatings incorporating CexOy NPs. On the other hand, hybrid organic-inorganic coatings will be developed incorporating inhibitors with different release kinetics and activation mechanisms. In all cases, improve the density and adhesion to metals and paints and self-healing ability will be the principal goals.

The project involves the optimization of compositions and synthesis conditions together with the characterization of the integrated systems. The following general tasks will be carried out:

  • To develop anodic oxide layers incorporating corrosion inhibitor.
  • To develop effective inorganic, hybrid and organic coatings with self-healing ability for light Al and Mg alloys;
  • To develop integrated self-healing coating systems, showing superior self-healing performance (activity, stability, long life protection).
  • Characterization of integrated self-healing systems (thickness, microstructure, adhesion properties, self-healing functionality of coatings, electrochemical and corrosion resistance tests…)

Admission requirements:

  • M.Sc./graduate degree in inorganic materials and technology, and material science and engineering; graduates from related field, such as physical chemistry, chemical physics, inorganic chemistry, organic and organometallic chemistry, analytical chemistry, chemical engineering, biochemistry, physics, and theoretical chemistry,
  • with the desire for independent laboratory work are also eligible,
  • high English language proficiency skills,
  • strive for excellence and be able to focus on solving scientific problems,
  • be a team player of high cultural awareness,
  • for more information, refer to Daniela Vavrová, PhD Study Advisor, daniela.vavrova@tnuni.sk

 

Admission exam terms:                                                                        Application submission terms:

26.-28.3.2019                                                                                                    23.3.2019

28.-30.5.2019                                                                                                14.5.2019

26.-28.8.2019                                                                                               12.8.2019

Your application package needs to include the following:

  • application form, open HERE:

          Application_form.docx

  • CV,
  • cover letter,
  • scan copy of passport (applicants from abroad),
  • copy of your diploma,
  • list of publications.